
A Comparison of YOLO and Mask-RCNN for
Detecting Cells from Microfluidic Images

1st Mehran Ghafari
Dept. of Computer Science

& Engineering
U. of Tennessee at Chattanooga

Chattanooga, TN, U.S.A.
ryg668@mocs.utc.edu

2nd Daniel Mailman
Dept. of Computer Science

& Engineering
U. of Tennessee at Chattanooga

Chattanooga, TN, U.S.A.
daniel-mailman@utc.edu

3rd Parisa Hatami
Dept. of Computer Science

& Engineering
U. of Tennessee at Chattanooga

Chattanooga, TN, U.S.A.
qxy699@mocs.utc.edu

4th Trevor Peyton
Dept. of Computer Science

& Engineering
U. of Tennessee at Chattanooga

Chattanooga, TN, U.S.A.
qtx464@mocs.utc.edu

5th Li Yang
Dept. of Computer Science

& Engineering
U. of Tennessee at Chattanooga

Chattanooga, TN, U.S.A.
li-yang@utc.edu

6th Weiwei Dang
Dept. Molecular & Human Genetics

Huffington Ctr. on Aging
Baylor Coll. of Medicine

Houston, U.S.A.
weiwei.dang@bcm.edu

7th Hong Qin
SimCenter, Dept. of Computer Science & Engineering

U. of Tennessee at Chattanooga
Chattanooga,TN, U.S.A.

hong-qin@utc.edu

Abstract—As an effective model to study aging, the budding
yeast Saccharomyces cerevisiae has revealed aging mechanisms
that are shared with human aging. Yeast cell lifespan can
be measured in replicative lifespans (RLS) - the number of
cell divisions from a single mother cell before dying. However,
counting yeast cell divisions from microscopic images is a tedious
task. Here, we address this challenge with computer vision object
detection. We compared two deep learning methods, YOLO and
MASK R-CNN to detect cells from microfluidic images. We
concluded that YOLO is more sensitive at detecting cells, whereas
MASK-RCNN is more informative on cell sizes. Therefore, both
methods are useful for automatic microfluidic image analysis.

Index Terms—machine learning, instance segmentation, cell
detection, cellular aging.

I. INTRODUCTION

Computer Vision (CV) approaches in recent years have
led to advancements in many fields including medical, civil,
surveillance, auto, etc [1]. There is a tremendous demand for
CV in healthcare as many diagnoses and disease treatments
rely on medical imaging [2]. Objects’ appearances in images
are associated with many features, most notably volume,
dimensionality, color, resolution, and moving object demeanor.
[3], [4].

This study analyses the effectiveness of CV techniques
for microfluidic cell detection (MFCD). In MFCD images,
cells are: visually extremely similar, extremely close together
(often sharing boundaries), and often overlap due to the image
being a map of 3 dimensions to 2 dimensions. These factors
make cell detection a challenging task. Other factors which

contribute to the difficulty of MFCD are uneven illumination,
low contrast, low resolution, out-of-focus images, and varying
foreground/background intensities [5]. The core task of object
detection in general and MFCD in particular is segmentation
- distinguishing object borders - into local and global regions
[6], [7]. MFCD images contain hundreds of cells to distin-
guish using CV segmentation methods. Precision is required,
especially in the identification of overlaps [8]. Segmentation
methods and models rely on image pixel characteristics as well
as sub-sectioning. Various methods and approaches have been
implemented to improve segmentation efficiency.

Many segmentation models are based on a convolutional
neural networks (CNNs). Based on preliminary literature ex-
amination, we chose two CNN-based models - You Only Look
Once (YOLO) [9] and Mask R-CNN [10] - to evaluate for the
task of MFCD.

YOLO uses a single CNN, predicts multiple bounding
boxes, and determines class probability for each available
image bounding box. YOLO is very fast and does not need
a complex pipeline, since it relies on regression analysis.
The model potentially runs at 45 frames per second (FPS)
without batch processing requirements - meaning it is also
capable of processing stream video in near-real-time. The
model uses a simple down-sampling method which has the
advantage of learning complex depth features of images using
residual blocks. [11] used YOLO-based system to achieve
99.7% accuracy detecting mass located in the breast. YOLO’s
main drawback is using bounding boxes (rather than extracting
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Fi g. 1. Mi cr o fl ui di c d e vi c e a n d i m a g e pr e- pr o c essi n g st e ps. Y O L O a n d M as k
R- C N N ar e a p pli e d t o p artiti o n e d mi cr o fl ui di c i m a g es. E a c h m o d el’s o ut p ut
yi el ds o bj e ct d et e cti o n a n d f e at ur e e xtr a cti o n.

s h a p e/ c o nt o ur d et ails) i n a p pr o xi m ati n g t ar g et p ositi o ns.
M as k R- C N N is a n i nst a n c e-s e g m e nt ati o n m et h o d. It is a

r e gi o n al C N N m o d el t h at g e n er at es d et e ct e d o bj e ct m as ks, i n-
cr e asi n g a c c ur a c y i n c o nt o ur d et e cti o n a n d d et er mi ni n g s h a p e
i nf or m ati o n [ 1 2]. H o w e v er, s o m e pr o bl e ms w er e r e p ort e d t h at
M as k R- C N N h as a R es n et- 1 0 1 [ 1 3] as its b a c k b o n e w hi c h
m a k es it a d e e p n e ur al n et w or k. H e n c e, it r e q uir es m or e
c o m p ut ati o n al s p a c e f or e a c h tr ai ni n g d at as et. T o a d dr ess
t his pr o bl e m, m o di fi e d M as k R- C N N ( R es n et- 8 6) us es f e w er
b a c k b o n e l a y ers f or v e hi cl e a n d p e d estri a n d et e cti o n [ 1 4].
F urt h er m or e, [ 1 5] d e m o nstr at es t h at M as k R- C N N h as p o or
p erf or m a n c e f or s e g m e nt ati o n i n c o m p aris o n t o U- n et.

D et ails of t h e c o m p aris o n of Y O L O t o M as k R- C N N f oll o w
i n t h e r e m ai n d er of t his st u d y. S e cti o n II a d dr ess es m et h o ds.
S e cti o n III c o m p ar es a n d dis c uss es t h e t w o m et h o ds. S e cti o n
I V s u m m ari z es t h e r es e ar c h.

II. M E T H O D

We us e d a n U b u nt u 1 8. 0 4. 4 wit h I nt el X e o n pr o c ess or wit h
1 0 c or es, 6 4 G B of R A M, a n d n Vi di a R T X 2 0 8 0 Ti G P U.

A. D at as et

T h e d at as et is e x p eri m e nt al r es ults o bt ai n e d fr o m mi cr o fl u-
i di c H Y A A c hi ps [ 1 6]. Gr a ys c al e i m a g es w er e a c q uir e d b y a
mi cr os c o p e ( Ol y m p us I X- 8 1) e q ui p p e d wit h a c a m er a ( Ol y m-
p us D P 7 2 C C D). T h e t e m p er at ur e w as s et at 8 6 ◦ F. 3 9 1 ti m e-
l a ps e mi cr o fl ui di c i m a g es w er e t a k e n at 1 0- mi n ut e i nt er v als
o v er a 9 6- h o ur p eri o d. O n a v er a g e, e a c h i m a g e c o nt ai ns 1 0 4
sili c o n- m a d e tr a ps wit h r o ws of 6 or 7 tr a ps. ( Fi g. 1). Si n c e
t h e dir e ct- o bj e ct d et e cti o n m et h o ds p erf or m e d p o orl y o n c ell
d et e cti o n d u e t o mi cr o fl ui di c l o w i m a g e r es ol uti o n ( gr a ys c al e
1 2 8 0 x 9 6 0), w e cr o p p e d tr a ps b y p artiti o ni n g i m a g es i nt o s u b-
i m a g es b as e d o n t h e n u m b er of a v ail a bl e tr a ps o n e a c h i m a g e.
T his a p pr o a c h is a n eff e cti v e t e c h ni q u e f or i m pr o vi n g a c c ur a c y
as w ell as g e n er ati n g m or e d at as ets wit h o ut d at a a u g m e nt ati o n.

B. A n n ot ati o n pr o c ess

We us e d 2 d at as ets. T h e first d at as et ( us e d f or c ell d et e cti o n)
c o nt ai n e d 1 0 0 tr ai ni n g s u b-i m a g es a n d 3 0 t est s u b-i m a g es.

T h e s e c o n d d at as et ( us e d f or f e at ur e e xtr a cti o n) c o nt ai n e d 1 0 0
tr ai ni n g s u b-i m a g es a n d 4 0 6 6 4 t est s u b-i m a g es. S u b-i m a g es
f or t h e first d at as et w er e r a n d o ml y s el e ct e d fr o m a b at c h
c o nt ai ni n g a m a xi m u m of 5 c ells p er i m a g e.

We us e d ” Mi cr os oft Vo T T T o ol ” a n d ”I m a g e-J ” f or i m a g e
a n n ot ati o n. M as k R- C N N a n n ot ati o n is p ol y g o n- b as e d. Y O L O
( b o u n di n g b o x) a n n ot ati o n f or m at is [ x, y, w, h], w h er e ( x, y) is
t h e b o u n di n g b o x c e ntr oi d, w is t h e wi dt h, a n d h is t h e h ei g ht.
Tr ai ni n g-s et s u b-i m a g e di m e nsi o n is 6 0 X 6 0. We us e d 6 0 X 6 0
a n d 5 1 2 X 5 1 2 s u b-i m a g e si z e f or t h e c ell d et e cti o n t est d at as et.
T h e l ar g er i m a g es w er e m a d e usi n g c u bi c i nt er p ol ati o n.

C. Y O L O

Y O L O t a k es a n i m a g e a n d esti m at es a c o n fi d e n c e l e v el f or
e a c h d et e ct e d o bj e ct. Y O L O’ str at e g y is t o r efr a m e o bj e ct
d et e cti o n as a si n gl e r e gr essi o n pr o bl e m fr o m i m a g e pi x els
t o b o u n di n g b o x a n d cl assi fi c ati o n pr o b a biliti es. Fi g 2 a s h o ws
Y O L O n et w or k ar c hit e ct ur e w h er e t h e i n p ut i m a g e is 6 0 x 6 0,
s c al e d u p t o 4 4 8 x 4 4 8 x 1. T h e n e xt s e cti o n is t h e D ar k N et
Ar c hit e ct ur e w hi c h is a C N N b as e d o n G o o gl e N et ar c hit e ct ur e
[ 1 7]. D ar k N et tr a nsf or ms i m a g e di m e nsi o ns fr o m 4 4 8 x 4 4 8 x 1
t o 7 x 7 x 1 0 2 4. F urt h er, 2 f ull- c o n n e ct e d n e ur al n et w or ks ar e
a p pli e d t o t h e m o d el wit h 2 o ut p uts ( 2 b): o bj e ct b o u n di n g
b o x (i n cl u di n g o bj e ct s c or e) a n d cl ass pr o b a bilit y. I n t h e
e ntir e Y O L O n et w or k, t h e d o w n-s a m pli n g of t h e n et w or k is
b as e d o n s etti n g t h e c o n v ol uti o n stri d e h y p er p ar a m et er t o 2
wit h o ut a p pl yi n g t h e p o oli n g l a y er. T h e l oss f u n cti o n c o nsists
of cl assi fi c ati o n l oss f or t h e cl ass pr o b a bilit y a n d l o c ali z ati o n
l oss f or t h e c o n fi d e n c e l e v el a n d b o u n di n g b o x w hi c h ar e b ot h
b as e d o n t h e s q u ar e d err or (s u m).

[ ht]
T h e i m pr o v e d v ersi o n of t his m o d el is Y O L O v 2 [ 1 8],

Y O L O v 3 [ 1 9], a n d Y O L O v 4 [ 2 0]. T his w or k m ai nl y f o c us es
o n Y O L O v 3, a n d all r es ults ar e b as e d o n v ersi o n 3 of t his
m o d el.

D. M as k R- C N N

R e gi o n- B as e d C N N ( R- C N N) is us e d f or s e m a nti c s e g-
m e nt ati o n a n d o bj e ct d et e cti o n a n d b uil ds o n ot h er C N N
m o d els. T h e b as eli n e m o d els - F ast R- C N N [ 2 1], F ast er R-
C N N [ 2 2], a n d F ull y C o n n e ct e d N et w or k ( F C N) [ 2 3] - ar e
r o b ust, pli a bl e, f ast-tr ai ni n g, a n d c o n c e pt u all y i nt uiti v e. M as k
R- C N N is b as e d o n F ast er R- C N N. M as k R- C N N o ut p erf or ms
tr a diti o n al s e m a nti c s e g m e nt ati o n m o d els b y off eri n g i nst a n c e
s e g m e nt ati o n, i n cl u di n g o bj e ct m as k. Fi g 3 ill ustr at es t h e
v ari eti es of R- C N N ar c hit e ct ur e. T h e s ali e nt diff er e n c es a m o n g
t h e m o d els is s u m m ari z e d as f oll o ws.

I n Fi g 3 a, m ulti pl e r e gi o n f e at ur es (si z e, s h a p e, t e xt ur e,
c ol or) ar e d et er mi n e d vi a m ulti pl e d e e p C N Ns ( e. g., Al e x N et
[ 2 4]) a n d f e d s e p ar at el y t o t h e b o u n di n g b o x offs et r e gr ess or
a n d t h e s u p p ort v e ct or m a c hi n e ( S V M) o bj e ct cl assi fi er. I n Fi g
3 b, t h e C N N r e gi o n o ut p ut is c o ns oli d at e d wit h a R e gi o n- Of-
I nt er est ( R OI) p o oli n g l a y er. T h e c o ns oli d at e d d at a is f e d t o t h e
r e gr ess or a n d t h e cl assi fi er e n a bli n g ass o ci ati o n of cl ass l a b els
t o R OIs. I n Fi g 3 c, m ulti pl e r e gi o n pr o p os als ar e eli mi n at e d i n
f a v or of usi n g t h e C N N o ut p ut as i n p ut t o a R e gi o n Pr o p os al

A ut h ori z e d li c e n s e d u s e li mit e d t o: U T C Li br ar y. D o w nl o a d e d o n M ar c h 1 7, 2 0 2 2 at 1 7: 4 9: 2 4 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  



( x, y, w , h , o bj s c or e)

( Cl a ss Pr o b a bilit y)

N et w or k ar c hit e ct ur e of Y O L O

I n p ut i m a g e 
6 0 x 6 0 

4 4 8
x
4 4 8

x
1 

B o u n di n g B o x & S c or e

M a p of Cl a s s Pr o b a bilit y

T w o Cl a s s D et e cti o nI n p ut I m a g e 

( a)

( b)

Fi g. 2. Y O L O ar c hit e ct ur e. ( a) Y O L O ar c hit e ct ur e wit h 6 0 x 6 0 i m a g e di m e nsi o ns w hi c h s c al e d u p t o 4 4 8 x 4 4 8 x 1. T h e o ut p ut c o nt ai ns b o u n di n g b o x i nf or m ati o n,
o bj e ct s c or e, a n d o bj e ct cl ass. ( b) Mi ni mi zi n g b o u n di n g b o x err or wit h t h e m a p of cl ass pr o b a bilit y.

( a)  R-C N N                       ( b)  F a st R -C N N                           ( c)  F a st er R -C N N                            ( d)  M a s k R -C N N

I n p ut i m a g e 
 6 0 x 6 0 

I n p ut i m a g e 
6 0 x 6 0 

I n p ut i m a g e 
 6 0 x 6 0 

I n p ut i m a g e 
6 0 x 6 0 

R- C N N M o d el s 

R OI p o oli n g

I n d e p e n d e nt I n d e p e n d e nt

j oi ntI n d e p e n d e nt

R OI p o oli n g

j oi nt j oi nt

R OI Ali g n

Fi g. 3. D e v el o p m e nt of R e gi o n- B as e d C o n v ol uti o n al N e ur al N et w or k ar c hi-
t e ct ur es i n cl u di n g ( a) R- C N N , ( b) F ast R- C N N , ( c) F ast er R- C N N a n d ( d)
M as k R- C N N.

N et w or k ( R P N). Fi g 3 d ill ustr at es M as k R- C N N m o di fi c ati o ns
t o F ast er R- C N N: R OI p o oli n g is r e pl a c e d wit h R OI ali g n m e nt
a n d a f ull y c o n v ol uti o n al n et w or k ( F C N) is a d d e d t o f e at ur e
a n al ysis f or d et er mi ni n g o bj e ct m as ks.

III. R E S U L T S A N D D I S C U S S I O N

A. C ell d et e cti o n

T his st u d y ass ess e d Y O L O a n d M as k R- C N N o bj e ct d e-
t e cti o n p erf or m a n c e wit h 6 0 x 6 0 a n d a u g m e nt e d 5 1 2 x 5 1 2 t est
d at as ets. We tr ai n e d Y O L O f or 2 0 0 e p o c hs a n d M as k R- C N N
f or 1 0 0 a n d 4 0 0 e p o c hs. Y O L O p erf or m a n c e w as e v al u at e d
o nl y wit h d at as et a u g m e nt ati o n; M as k R- C N N w as e v al u at e d
b ot h wit h a n d wit h o ut d at as et a u g m e nt ati o n.

Fi g 4 s h o ws d et e cti o n r es ults f or b ot h m o d els. Gr o u n d tr ut h
w as 4 c ells, M as k R- C N N d et e ct e d a n e xtr a c ell at t h e tr a p

C e ll 0 .9 9 5

C e ll 0 .9 9 4
C e ll 0 .9 9 6

C e ll 0 .9 9 9

C e ll 0 .9 5 1

Fi g. 4.  M o d el d et e cti o n c o m p aris o n f or tr a p wit h 4 c ells. M as k R- C N N
d et e ct e d a n e xtr a c ell. Y O L O d et e cti o n m at c h e d gr o u n d tr ut h.

o utl et ( bl u e c ell). T his ill ustr ati o n is b as e d o n 6 0 x 6 0 i m a g e
di m e nsi o ns, 2 0 0 e p o c hs f or Y O L O, a n d 1 0 0 e p o c hs f or M as k
R- C N N wit h o ut d at as et a u g m e nt ati o n.

Fi g 5 s h o ws M as k R- C N N d et e cti n g t h e c orr e ct n u m b er
of c ells, b ut o v er esti m ati n g c ell si z e. D at as et a u g m e nt ati o n
e n a bl es M as k R- C N N t o b ett er esti m at e c ell si z e.

Fi g 6 ill ustr at es d at as et a u g m e nt ati o n a n d 4 0 0 e p o c hs i m-
pr o vi n g M as k R- C N N c ell d et e cti o n. T h e d et e ct e d c ell a n d
m as k i m a g e c o u nts ar e si mil ar t o t h e s o ur c e i m a g e. I n c o ntr ast,
Y O L O d et e ct e d 1 l ess c ell t h a n gr o u n d tr ut h ( p ur pl e c ell).

Fi g 7 ill ustr at es t h e b e n e fit of usi n g l ar g er i m a g es cr e at e d
wit h c u bi c i nt er p ol ati o n. Si n c e Y O L O a n d M as k R- C N N
ar e d esi g n e d t o d et e ct o bj e cts at hi g h er i m a g e r es ol uti o n,
w e s u p pl e m e nt e d t h e st u d y wit h s c al e d- u p i m a g es. Fi g 7
r e pr es e nts d et e cti o n a c c ur a c y diff er e n c es d u e t o i m a g e si z e.

A ut h ori z e d li c e n s e d u s e li mit e d t o: U T C Li br ar y. D o w nl o a d e d o n M ar c h 1 7, 2 0 2 2 at 1 7: 4 9: 2 4 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  



Cell 0.999

Cell 0.996

Cell 0.999

Cell 0.998

Fig. 5. Detection with dataset augmentation. YOLO and Mask R-CNN
detection matched the ground truth. Dataset augmentation improved the
accuracy of mask area for Mask R-CNN.

Cell 0.994Cell 0.997

Cell 0.994

Cell 0.998

Cell 0.806

Cell 0.999
Cell 1.000

Cell 0.999

Cell 1.000

Fig. 6. Modification of Mask R-CNN including YOLO detection error. Mask
R-CNN with augmentation and 400 epochs detected 4 cells (matched the
ground truth), and YOLO detected 3 cells.

The top-row images show similar results for Mask R-CNN and
YOLO with dataset augmentation and 400 epochs applied to
Mask R-CNN. The bottom-row shows YOLO detecting 2 cells
with an inaccurate bounding box (covering only half the cell
area). In this example, Mask R-CNN with data augmentation
and 400 epochs was more accurate than YOLO..

Cell 0.947 Cell 1.000

Cell 0.986

Cell 0.915 Cell 1.000

Cell 0.991

Fig. 7. Comparison of YOLO and Mask R-CNN with higher image resolution.
In the first row, modified Mask R-CNN and YOLO matched the ground truth
(2 cells). In the second row, YOLO detected a small portion of the cell below
the trap.

Cell area comparison  

Index

Ar
ea

Fig. 8. Cell area comparison for YOLO and Mask R-CNN. Orange/Gray
discrepancy illustrates Mask R-CNN detecting fewer cells.

B. Feature extraction

In this section, we evaluate the performance of YOLO and
Mask R-CNN on a dataset that contains 100 training images
and 40,664 test images. YOLO trained for 200 epochs and
Mask R-CNN trained for 400 epochs. Our dataset augmenta-
tion was used for both models. Features for both models are
’area’, ’total objects’, ’confidence’, and ’coordinates’.

Fig 8 shows cell size comparison using both models. YOLO
results are in gray, Mask R-CNN results are in orange. Yolo’s
average cell area is larger Mask R-CNN’s. YOLO’s average
cell size ranges from 80 to 100 pixels with confidence rate
from 10% to 100%. In contrast, Mask R-CNN’s average
detected cell size ranges from 50 to 80 pixels, and its detection
rate confidence ranges from 90% to 100%.

Fig 9 plots cell size variation versus detection counts for
sample traps 01, 20, and 60. for both models. YOLO results
show many same-size cells (represented as a row) which
indicates that YOLO is less accurate predicting cell size.
More variation with Mask R-CNN indicates greater accuracy
determining cell size.

Fig 10 shows total counts: 87,908 (YOLO) and 81,842
(Mask R-CNN).

Area comparison of individual trap   
YOLO             

Ce
ll
Si
ze
 

Index

Tp=1 Tp=20 Tp=60

Ce
ll 
Si
ze
 

Tp=1

Mask R-CNN

Tp=20 Tp=60

Index Index

IndexIndex

Index

Fig. 9. Area variation for sample traps. YOLO is more accurate for larger
cell sizes and Mask R-CNN is more accurate for smaller cell sizes.
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Cell counting 

87908
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42257

19960

9537 8925
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         YOLO
Mask R-CNN

Total
Cells

Total
2 Cells

Total
3 Cells

Total
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Fig. 10. Cell counting comparison for the individual model. YOLO had better
cell detection when the number of cells inside a trap was more the 2 cells.
Mask R-CNN performed better when the number of cells was in the range of
1 to 2 cells.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

C. Models comparison

Performance metrics are calculated using equations 1, 2 and
3 where TP is true positives, TN is true negatives, FP is false
positives, and FN is false negatives.

Table I compares simple metrics for both methods. The
metrics for TP and FP indicate YOLO is more accurate for
cell detection with mAPs of 90.6% (YOLO) and 73% (Mask
R-CNN). Total cell detections indicate that YOLO is more
sensitive for object detection and has less variation in the cell
area.

Fig 11 compares mean average precisions (mAPs) for the
dataset comprising the first 30 images, indicating YOLO
fluctuates less than Mask R-CNN. YOLO cell area calculation
uses bounding boxes, decreasing accuracy.

In this work, we modelled cell area as ellipses and cal-
culated it using bounding box information. Both models had
the highest performance when there were 2 cells inside traps
and had poor performance when there were more than 3
cells inside traps. Mask R-CNN performed much better than
YOLO when the number of cells inside the trap is less than 3
cells. Although Mask R-CNN has a lower mAP, its cell area
detection is more accurate compared to ground truth. Since
Mask R-CNN generates masks, cell area accuracy is much
higher than YOLO.

TABLE I
MODELS PERFORMANCE COMPARISON

Metric YOLO Mask R-CNN
Cell

TP 74 53
FP 7 11

Precision 95.03% 85%
Recall 92% 82%

Total Detection 81 64
Total Image 30 30

mAP 90.6 % 73 %
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Fig. 11. mAP comparison for YOLO and Mask R-CNN.

IV. CONCLUSION

We evaluated two CNN models for detecting cells in
microfluidic images. YOLO and Mask R-CNN were trained
with 100 yeast microfluidic images, tested for object detection
on 30 images, and feature extraction on 40,664 images. The
results indicate that YOLO was more accurate for object
detection but was very sensitive to noise. Yolo also was less
accurate for area estimation.

To both generalize and summarize: YOLO appears useful
for feature extraction and object detection, but less-so for
cell area determination and produces extra unnecessary details
(noise). Mask R-CNN produces better estimates of area due
to its use of masking and can be improved with data augmen-
tation and increasing epoch count, which increases already
computationally expensive training.

This comparison implies that YOLO and Mask R-CNN are
both useful for automatic small object detection from medical
images. However, we emphasize the present study highlights
the need for further development of deep learning methods
to facilitate the analysis of time-lapse microscopic images
generated by microfluidic devices.
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