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Abstract—As an effective model to study aging, the budding
yeast Saccharomyces cerevisiae has revealed aging mechanisms
that are shared with human aging. Yeast cell lifespan can
be measured in replicative lifespans (RLS) - the number of
cell divisions from a single mother cell before dying. However,
counting yeast cell divisions from microscopic images is a tedious
task. Here, we address this challenge with computer vision object
detection. We compared two deep learning methods, YOLO and
MASK R-CNN to detect cells from microfluidic images. We
concluded that YOLO is more sensitive at detecting cells, whereas
MASK-RCNN is more informative on cell sizes. Therefore, both
methods are useful for automatic microfluidic image analysis.

Index Terms—machine learning, instance segmentation, cell
detection, cellular aging.

I. INTRODUCTION

Computer Vision (CV) approaches in recent years have
led to advancements in many fields including medical, civil,
surveillance, auto, etc [1]. There is a tremendous demand for
CV in healthcare as many diagnoses and disease treatments
rely on medical imaging [2]. Objects’ appearances in images
are associated with many features, most notably volume,
dimensionality, color, resolution, and moving object demeanor.
(31, [4].

This study analyses the effectiveness of CV techniques
for microfluidic cell detection (MFCD). In MFCD images,
cells are: visually extremely similar, extremely close together
(often sharing boundaries), and often overlap due to the image
being a map of 3 dimensions to 2 dimensions. These factors
make cell detection a challenging task. Other factors which
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contribute to the difficulty of MFCD are uneven illumination,
low contrast, low resolution, out-of-focus images, and varying
foreground/background intensities [5]. The core task of object
detection in general and MFCD in particular is segmentation
- distinguishing object borders - into local and global regions
[6], [7]. MFCD images contain hundreds of cells to distin-
guish using CV segmentation methods. Precision is required,
especially in the identification of overlaps [8]. Segmentation
methods and models rely on image pixel characteristics as well
as sub-sectioning. Various methods and approaches have been
implemented to improve segmentation efficiency.

Many segmentation models are based on a convolutional
neural networks (CNNs). Based on preliminary literature ex-
amination, we chose two CNN-based models - You Only Look
Once (YOLO) [9] and Mask R-CNN [10] - to evaluate for the
task of MFCD.

YOLO uses a single CNN, predicts multiple bounding
boxes, and determines class probability for each available
image bounding box. YOLO is very fast and does not need
a complex pipeline, since it relies on regression analysis.
The model potentially runs at 45 frames per second (FPS)
without batch processing requirements - meaning it is also
capable of processing stream video in near-real-time. The
model uses a simple down-sampling method which has the
advantage of learning complex depth features of images using
residual blocks. [11] used YOLO-based system to achieve
99.7% accuracy detecting mass located in the breast. YOLO’s
main drawback is using bounding boxes (rather than extracting
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Fig. 1. Microfluidic device and image pre-processing steps. YOLO and Mask
R-CNN are applied to partitioned microfluidic images. Each model’s output
yields object detection and feature extraction.

shape/contour details) in approximating target positions.

Mask R-CNN is an instance-segmentation method. It is a
regional CNN model that generates detected object masks, in-
creasing accuracy in contour detection and determining shape
information [12]. However, some problems were reported that
Mask R-CNN has a Resnet-101 [13] as its backbone which
makes it a deep neural network. Hence, it requires more
computational space for each training dataset. To address
this problem, modified Mask R-CNN (Resnet-86) uses fewer
backbone layers for vehicle and pedestrian detection [14].
Furthermore, [15] demonstrates that Mask R-CNN has poor
performance for segmentation in comparison to U-net.

Details of the comparison of YOLO to Mask R-CNN follow
in the remainder of this study. Section II addresses methods.
Section III compares and discusses the two methods. Section
IV summarizes the research.

II. METHOD

We used an Ubuntu 18.04.4 with Intel Xeon processor with
10 cores, 64GB of RAM, and nVidia RTX 2080 Ti GPU.

A. Dataset

The dataset is experimental results obtained from microflu-
idic HYAA chips [16]. Grayscale images were acquired by a
microscope (Olympus IX-81) equipped with a camera (Olym-
pus DP72 CCD). The temperature was set at 86°F. 391 time-
lapse microfluidic images were taken at 10-minute intervals
over a 96-hour period. On average, each image contains 104
silicon-made traps with rows of 6 or 7 traps. (Fig.1). Since
the direct-object detection methods performed poorly on cell
detection due to microfluidic low image resolution (grayscale
1280x960), we cropped traps by partitioning images into sub-
images based on the number of available traps on each image.
This approach is an effective technique for improving accuracy
as well as generating more datasets without data augmentation.

B. Annotation process

We used 2 datasets. The first dataset (used for cell detection)
contained 100 training sub-images and 30 test sub-images.

The second dataset (used for feature extraction) contained 100
training sub-images and 40664 test sub-images. Sub-images
for the first dataset were randomly selected from a batch
containing a maximum of 5 cells per image.

We used "Microsoft VoTT Tool” and “Image-J” for image
annotation. Mask R-CNN annotation is polygon-based. YOLO
(bounding box) annotation format is [X,y,w,h], where (x.y) is
the bounding box centroid, w is the width, and h is the height.
Training-set sub-image dimension is 60X60. We used 60X60
and 512X512 sub-image size for the cell detection test dataset.
The larger images were made using cubic interpolation.

C. YOLO

YOLO takes an image and estimates a confidence level for
each detected object. YOLO’ strategy is to reframe object
detection as a single regression problem from image pixels
to bounding box and classification probabilities. Fig 2a shows
YOLO network architecture where the input image is 60x60,
scaled up to 448x448x1. The next section is the DarkNet
Architecture which is a CNN based on GoogleNet architecture
[17]. DarkNet transforms image dimensions from 448x448x1
to 7x7x1024. Further, 2 full-connected neural networks are
applied to the model with 2 outputs (2b): object bounding
box (including object score) and class probability. In the
entire YOLO network, the down-sampling of the network is
based on setting the convolution stride hyperparameter to 2
without applying the pooling layer. The loss function consists
of classification loss for the class probability and localization
loss for the confidence level and bounding box which are both
based on the squared error (sum).

[ht]

The improved version of this model is YOLOv2 [18],
YOLOV3 [19], and YOLOv4 [20]. This work mainly focuses
on YOLOvV3, and all results are based on version 3 of this
model.

D. Mask R-CNN

Region-Based CNN (R-CNN) is used for semantic seg-
mentation and object detection and builds on other CNN
models. The baseline models - Fast R-CNN [21], Faster R-
CNN [22], and Fully Connected Network (FCN) [23] - are
robust, pliable, fast-training, and conceptually intuitive. Mask
R-CNN is based on Faster R-CNN. Mask R-CNN outperforms
traditional semantic segmentation models by offering instance
segmentation, including object mask. Fig 3 illustrates the
varieties of R-CNN architecture. The salient differences among
the models is summarized as follows.

In Fig 3a, multiple region features (size, shape, texture,
color) are determined via multiple deep CNNs (e.g., AlexNet
[24]) and fed separately to the bounding box offset regressor
and the support vector machine (SVM) object classifier. In Fig
3b, the CNN region output is consolidated with a Region-Of-
Interest (ROI) pooling layer. The consolidated data is fed to the
regressor and the classifier enabling association of class labels
to ROIs. In Fig 3c, multiple region proposals are eliminated in
favor of using the CNN output as input to a Region Proposal
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Fig. 3. Development of Region-Based Convolutional Neural Network archi-
tectures including (a) R-CNN , (b) Fast R-CNN , (c) Faster R-CNN and (d)
Mask R-CNN.

Network (RPN). Fig 3d illustrates Mask R-CNN modifications
to Faster R-CNN: ROI pooling is replaced with ROI alignment
and a fully convolutional network (FCN) is added to feature
analysis for determining object masks.

III. RESULTS AND DISCUSSION
A. Cell detection

This study assessed YOLO and Mask R-CNN object de-
tection performance with 60x60 and augmented 512x512 test
datasets. We trained YOLO for 200 epochs and Mask R-CNN
for 100 and 400 epochs. YOLO performance was evaluated
only with dataset augmentation; Mask R-CNN was evaluated
both with and without dataset augmentation.

Fig 4 shows detection results for both models. Ground truth
was 4 cells, Mask R-CNN detected an extra cell at the trap

Detection comparison (Mask R-CNN error)
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Fig. 4. Model detection comparison for trap with 4 cells. Mask R-CNN
detected an extra cell. YOLO detection matched ground truth.

outlet (blue cell). This illustration is based on 60x60 image
dimensions, 200 epochs for YOLO, and 100 epochs for Mask
R-CNN without dataset augmentation.

Fig 5 shows Mask R-CNN detecting the correct number
of cells, but overestimating cell size. Dataset augmentation
enables Mask R-CNN to better estimate cell size.

Fig 6 illustrates dataset augmentation and 400 epochs im-
proving Mask R-CNN cell detection. The detected cell and
mask image counts are similar to the source image. In contrast,
YOLO detected 1 less cell than ground truth (purple cell).

Fig 7 illustrates the benefit of using larger images created
with cubic interpolation. Since YOLO and Mask R-CNN
are designed to detect objects at higher image resolution,
we supplemented the study with scaled-up images. Fig 7
represents detection accuracy differences due to image size.
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Fig. 5. Detection with dataset augmentation. YOLO and Mask R-CNN
detection matched the ground truth. Dataset augmentation improved the
accuracy of mask area for Mask R-CNN.
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Fig. 6. Modification of Mask R-CNN including YOLO detection error. Mask
R-CNN with augmentation and 400 epochs detected 4 cells (matched the
ground truth), and YOLO detected 3 cells.

The top-row images show similar results for Mask R-CNN and
YOLO with dataset augmentation and 400 epochs applied to
Mask R-CNN. The bottom-row shows YOLO detecting 2 cells
with an inaccurate bounding box (covering only half the cell
area). In this example, Mask R-CNN with data augmentation
and 400 epochs was more accurate than YOLO..

Detection comparison (scaled up)
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Fig. 7. Comparison of YOLO and Mask R-CNN with higher image resolution.
In the first row, modified Mask R-CNN and YOLO matched the ground truth
(2 cells). In the second row, YOLO detected a small portion of the cell below
the trap.
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Fig. 8. Cell area comparison for YOLO and Mask R-CNN. Orange/Gray
discrepancy illustrates Mask R-CNN detecting fewer cells.

B. Feature extraction

In this section, we evaluate the performance of YOLO and
Mask R-CNN on a dataset that contains 100 training images
and 40,664 test images. YOLO trained for 200 epochs and
Mask R-CNN trained for 400 epochs. Our dataset augmenta-
tion was used for both models. Features for both models are
“area’, ’total objects’, *confidence’, and ’coordinates’.

Fig 8 shows cell size comparison using both models. YOLO
results are in gray, Mask R-CNN results are in orange. Yolo’s
average cell area is larger Mask R-CNN’s. YOLO’s average
cell size ranges from 80 to 100 pixels with confidence rate
from 10% to 100%. In contrast, Mask R-CNN’s average
detected cell size ranges from 50 to 80 pixels, and its detection
rate confidence ranges from 90% to 100%.

Fig 9 plots cell size variation versus detection counts for
sample traps 01, 20, and 60. for both models. YOLO results
show many same-size cells (represented as a row) which
indicates that YOLO is less accurate predicting cell size.
More variation with Mask R-CNN indicates greater accuracy
determining cell size.

Fig 10 shows total counts: 87,908 (YOLO) and 81,842
(Mask R-CNN).

Area comparison of individual trap

YOLO
Tp=1 8 =20 Tp=60
& s
v 2
8 8
. 5
o o J o o o
Index
Mask R-CNN
g Tp=1 Tp=20 | HN Tp=60
) . J
N H
3 s N
3
R f

Index

Fig. 9. Area variation for sample traps. YOLO is more accurate for larger
cell sizes and Mask R-CNN is more accurate for smaller cell sizes.
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C. Models comparison

Performance metrics are calculated using equations 1, 2 and
3 where TP is true positives, TN is true negatives, FP is false
positives, and FN is false negatives.

Table I compares simple metrics for both methods. The
metrics for TP and FP indicate YOLO is more accurate for
cell detection with mAPs of 90.6% (YOLO) and 73% (Mask
R-CNN). Total cell detections indicate that YOLO is more
sensitive for object detection and has less variation in the cell
area.

Fig 11 compares mean average precisions (mAPs) for the
dataset comprising the first 30 images, indicating YOLO
fluctuates less than Mask R-CNN. YOLO cell area calculation
uses bounding boxes, decreasing accuracy.

In this work, we modelled cell area as ellipses and cal-
culated it using bounding box information. Both models had
the highest performance when there were 2 cells inside traps
and had poor performance when there were more than 3
cells inside traps. Mask R-CNN performed much better than
YOLO when the number of cells inside the trap is less than 3
cells. Although Mask R-CNN has a lower mAP, its cell area
detection is more accurate compared to ground truth. Since
Mask R-CNN generates masks, cell area accuracy is much
higher than YOLO.

Metric YOLO [ Mask R-CNN
Cell
TP 74 53
FP 7 11
Precision 95.03% 85%
Recall 92% 82%
Total Detection 81 64
Total Image 30 30
mAP 90.6 % 73 %
120 mAP (YOLO)
g)o 80
;:j 40
E 20
Image
120 mAP (mask R-CNN)

Percentage

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Image

Fig. 11. mAP comparison for YOLO and Mask R-CNN.

IV. CONCLUSION

We evaluated two CNN models for detecting cells in
microfluidic images. YOLO and Mask R-CNN were trained
with 100 yeast microfluidic images, tested for object detection
on 30 images, and feature extraction on 40,664 images. The
results indicate that YOLO was more accurate for object
detection but was very sensitive to noise. Yolo also was less
accurate for area estimation.

To both generalize and summarize: YOLO appears useful
for feature extraction and object detection, but less-so for
cell area determination and produces extra unnecessary details
(noise). Mask R-CNN produces better estimates of area due
to its use of masking and can be improved with data augmen-
tation and increasing epoch count, which increases already
computationally expensive training.

This comparison implies that YOLO and Mask R-CNN are
both useful for automatic small object detection from medical
images. However, we emphasize the present study highlights
the need for further development of deep learning methods
to facilitate the analysis of time-lapse microscopic images
generated by microfluidic devices.
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