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Abstract—Time-lapse microscopy is an effective research tool
to monitor cell behavior and cell divisions. Recent advances
in microfluidics have accelerated the adoption of time-lapse
microscopy in research. However, it is challenging to visualize
and interpret the time-series data gathered through time-lapse
microscopy. We have developed a circular plotting software tool,
μPolar, to visualize the trends and patterns of the cell movements
and cell division events in a time-series. μPolar is interactive and
easy to use. We demonstrate the utility of μPolar by visualizing
the events of dividing yeast cells where cell divisions lead to
oscillating plotting patterns, and in migrating mouse fibroblasts
where cell shapes change during the migration. μPolar potentially
could be applied to other types of time-series of microscopic
images. This R package μPolar is available through GitHub.

Index Terms—Microfluidics, microscopic, cell, visualization,
replicative lifespan

I. INTRODUCTION

Cell lineages and cell behavior are important in biological

and biomedical research [1]–[3]. Cell divisions and cell family

lineages are often monitored by time-lapse microscopic imag-

ing experiments. From time-lapse microscopic image data sets,

we can monitor intra-cellular and inter-cellular changes, cell

division events, and cell growth and migration [4]. These infer-

ences are often assisted with image analysis software tools [5]–

[7]. Microfluidics is a high-throughput approach that generates

a large volume of time-lapse images of cells. A microfluidic

device is an ultra-small structure with microfluidic channels

offering fast and reliable results in comparison to traditional

methods [8], [9]. Time-lapse microfluidic images amplify

biologists’ ability to experimentally image live cells during

their development [10]. Due to these images’ functionality and

micro-scale dimension, they can be used in many applications

such as drug delivery, cell monitoring, cell division, and virus

inspection [11], [12]. Currently, however, there is a need

for visualization tools for time-lapse microscopic images that

can facilitate biological interpretation and provides interactive

access.

In particular, microfluidics have become a high-throughput

method for analysis of dividing yeast cells [13]. The budding

yeast is an effective model for cellular aging [14]. Yeast

replicative lifespan (RLS) is defined as the number of cell

divisions that a single mother cell can accomplish before it

ceases to divide [15]. In the study of cellular aging, time-lapse

microfluidic microscopic imaging has provided unprecedented

quantitative details on changes in cell characteristics during

aging. Determining the replicative lifespan of dividing yeast

cells is time-consuming and is traditionally measured through

manual micro-dissection [16], [17]. The microfluidic approach

generates hundreds of time-lapse microscopic images, convert-

ing the old challenge of manual dissection into a new challenge

of time-series image data analysis [18]–[20]. One way to tackle

this challenge is data visualization, a need that this work aimed

to address.

Here, we present μPolar (pronounced “[mu] Polar”), an R

package that provides circular plots to visualize time series

of cell behavior and cell division events. We demonstrated

the utility of our method to visualize the division events of

dividing cells over a time period in two types of cells: budding

yeast cells and mouse fibroblasts.

II. IMPLEMENTATION AND FEATURES

A. Design of μPolar

The goal of μPolar is to visualize time-series data generated

by time-lapse microscopic images in a region of interest

(Fig.1). The basic idea is to use a circular plot to represent the

change of time, where points on the radius represent cellular

events and/or characteristics at each time point. A sequence

of microfluidic images is shown in Fig.1a from time-point 1

to time-point 40. For instance, the image (60x60 pixels) at

time-point 40 illustrates two cells inside a microfluidic trap.

The plot representation is based on cell centroid points [e.g.,

(x1, y1) and (x2, y2)] and areas (e.g., A1, A2), which can

be obtained by an image processing tool (e.g., ImageJ, Fiji)

or procedures such as YOLO or MaskRCNN [21]–[24]. The

input files of μPolar are in comma-separated values (CSV)

format (Fig.1b).
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Fig. 1. The design of μPolar. (a) A sequence of microfluidic sub-images (60x60 pixels). The front image was labeled with cell numbers, coordinates, cell
boundaries, and the reference point. (b) A sample of μPolar dataset format with optional features of area and RLS, which correspond to the front image in
a. (c) μPolar plot with a representation of cell location on the plot and cell color tag. Black arrows track the same cell objects at subsequent time-points.

1) Distance calculation: Since the cell time-points and

coordinates are available from the dataset (e.g., Fig.1b), the

cell distance from the reference point can be calculated by

using the Euclidean equation

di =
√
(xi − xr)2 + (yi − yr)2

i = [1, 2, 3, 4, ...,m]
(1)

where di is the calculated distance at the time-point i
corresponding to the image number as shown in Fig.1a and

Fig.1c in light green color. xi and yi are cell coordinates at

each image. Coordinate (xr, yr) is the reference point, which

need to be specified by the user as required for the μPolar

function. m is the maximum time-point equivalent to the

total number of images. The reference point could be chosen

at any point of the image based on the region of interest. For

instance, in Fig.1a, the reference point was chosen at xr = 30
and yr = 1 based on cell movement and the position of the

trap.

2) Time to angular degree conversion: The next step is to

convert the image time-points to angular degrees, suitable for

circular plot visualization. The time to degree conversion is

calculated by

θ =
Dmax

Tmax
(2)

Aacc =
n∑

i=1

θi (3)

where Dmax is the maximum degree (360◦) and Tmax is

the maximum time-point (e.g., last time-point). Aacc is the

accumulative angles of each radius vector (θ) and n is the

maximum plot degree. All cell distance values at each time-

point are mapped on the radius of a circular plot with a

corresponding Aacc value.

The μPolar schematic plot in Fig.1c illustrates microfluidic

images at time-point 1 (zero cells), time-point 10 (one cell),

time-point 20 (two cells), time-point 30 (three cells), and time-

point 40 (two cells). The color tag method represents the

number of the cell corresponding to the number of cells in

the image. We found this color-tagging useful to track mother

cells and daughter cells at different time-points, and identify

cell division events.

B. The μPolar R function

The μPolar package, written in R language, utilizes three

other R libraries including tidyverse, utils, and plotly. The

μPolar function has 10 arguments: the first argument is the

input dataset, and the remaining arguments are required for

visualization adjustment. Table I demonstrates an overview
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of μPolar function arguments. Argument (I) is the time-

lapse dataset and should include Time and coordinates, which

are required for basic visualization. The Area and RLS are

optional features of the μPlot function and can be added to

the visualization function if they are available from the dataset.

Argument (II) is the reference point (xr,yr) that can be chosen

by the user. The reference point mainly depends on the type

of image and the purpose of the investigation (e.g., edge coor-

dinate of the image in the direction of the cells’ movement).

Argument (III) is to select a particular range of time-points

for plot visualization. The starting and ending time-points can

be given by the user; otherwise, μPolar visualizes all time-

points. This option is useful to analyze a specific range of

time-points (e.g., overcrowded cells). Argument (IV) displays

the plot title; otherwise, the default is no title. Argument (V) is

to evenly divide the angle line on the plot. This functionality

is similarly useful to analyze a range of time-points when

there is an overcrowded region on the plot. Argument (VI) is

a numeric value that indicates the reference line on the plot.

Argument (VII) is a numerical value that adjusts the cell area

when available. It represents the cell with actual size (pixels),

which is useful to visualize cell movement. Argument (VIII)

is vector dot colors associated with the individual cell, and the

default is set to 12 colors. This option is effective to visualize

cell tracking identification at each time-point. In addition, it

is very beneficial for RLS analysis when the cell development

can be visualized based on cell size over time. Argument (IX)

is vector line colors associated with a number of cells at each

time-point. This gives a good overview of a number of cells

variations over time. Argument (X) adjusts the cell distance

from the edge of the plot when there is overcrowding.

C. Representation of cell events and characteristics

We provide 8 examples to illustrate how μPolar represent

typical types of cell events and characteristics of dividing cells

in microfluidics time-lapse experiments (Fig.2): traps without

cells, traps with a yeast mother cells and a budding daughter

cell, a cell division event in a time series, growing mother

cells with daughter cells downward, growing mother cells with

daughter cell upward, senescent and dead cells in a time series,

and traps with multiple cells. Fig.2a uses a white dot on the

reference line (red line) to represent a trap without cells. The

red reference line is defined here at the bottom of the trap.

The event in Fig.2b portrays the initial stage after division

occurs, where the mother cell is located inside the trap with

a bud at the trap outlet. Purple dots represent the mother cell

inside the trap, and the dark red dots represent the bud. The

mother and daughter cells in the images are connected to

their corresponding dots in the plot by arrows. In the next

event Fig.2c, we highlighted a mother cell without daughter

bud in the middle of a time series of mother cells with buds,

indicating the moment that one daughter cell has just been

separated from the mother cell, and another daughter cell is

too small to be detected. Fig.2d describes a trap with 5 cells

(purple line pointed by a black arrow), and an overcrowding

situation that frequently occurs with growing yeast cells. In

Fig.2e, a mother cell is dividing with daughter cells budding

toward the bottom of the trap. The mother cells at each time

point with budding daughters are in purple, and mother cells

without daughters are in black. Daughter cells budding toward

the bottom of the trap are in red. Fig.2f illustrates similar cell

division events except that daughter cells were budded toward

the upper opening of the trap. In this case, daughter cells are

in purple and mother cells are in red. Fig.2g demonstrates

a situation where the mother cell and daughter cell remain

attached for a long period of time without detectable cell

divisions. Fig.2h represents a senescent mother cell that has

stopped dividing. In this case, there is a single mother cell,

represented in a dark dot, at each time point. This situation

typically happens at the end of the cell lifespan.

III. PACKAGE AVAILABILITY

The package μPolar is an open-source package freely avail-

able on Github at https://github.com/merang/uPolar. The pack-

age installation can be done in R either using the install github

function in the ‘devtools’ or using the githubinstall function

in the ‘githubinstall’ package.

IV. DATA USED

To demonstrate μPolar’s utility, we plotted two sets of time-

lapse microscopic images: one set of dividing yeast cells and

the other of migrating mouse fibroblasts. The yeast cell images

were generously provided to us from a recent experimental

work in [13]. The original microfluidic images contain many

traps , we partitioned these images into 391 sub-images in

60x60 pixels dimensions based on the cell traps. The mouse

fibroblast dataset is publicly available and contains 37 time-

lapse microscopic images [20]. Since the number of fibroblast

in each image (307x306 pixels) was more than 50, we cropped

a section of time-lapse images in 121x121 pixels dimensions.

Based on image size and resolution, the μPolar function can

be applied to any time-lapse cellular microscopic images by

cropping the region of interest. Image feature extraction (e.g.,

coordinates, area) can be done via many methods. We used

“Fiji - ImageJ” tools to obtain cell coordinates and cell area.

This process can be automatic; however, it often need manual

verification especially for images with low resolutions. The

obtained data can be exported in CSV format, which is suitable

as inputs for μPolar.

V. RESULTS

A. Application to microfluidic yeast cell images

We present 10 μPolar plots for Trap No. 2, 12, 22, 41, 50,

59, 73, 82, 98 and 100 in Fig. S1. These 10 plots represent a

range of cell division events. In each image, we use color to

represent the number of cells in each trap. The white, black,

light blue, pink, green, purple, and orange colors represent

0 cells, 1 cell, 2 cells, 3 cells, 4 cells, 5 cells, and 6 cells,

respectively.

Additionally, we provided three zoomed-in examples. In

Fig. S2, we highlighted time-point 30 of Trap No. 8, which

contains 4 cells above the tap, represented in a green line. At
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TABLE I
THE μPOLAR R FUNCTION DESCRIPTION

Function

μPolar(sFileName,nBaseXY,nSecBE,sTitle,numAtics,nRefVal,nDotAdjust,vDotColors,vLineColors,nEdgeAdjust)

Number Argument Description

(I) sFilename Input dataset containing Time, X, Y, Area (optional), and RLS (optional)

(II) nBaseXY Given reference point (xr , yr)

(III) nSecBEt Given plot began and end time-points

(IV) sTitle Plot title (default = no title)

(V) nNumAtics Number of evenly spaced angle tic lines

(VI) nRefVal Numerical value for reference line

(VII) nDotAdjust Factor for multiplying dot size

(VIII) vDotColors Vector of dot colors associated with cell

(IX) vLineColors Vector of line colors associated with linked cells

(X) nEdgeAdjust Numerical value to extend outer plot radius

this time-point, all cells are above the reference line and a

cell division happened outside the trap due to the oversized

mother cell (#4). In another example, Fig. S3 demonstrates

Trap No. 33 at time-point 11 when there are 2 cells available

in the image. This is an early stage of cell division when 2

cells (sky blue line) are very close to each other. In Fig. S4,

we show the oscillating plotting patterns that represent regular

cell division intervals of an healthy yeast mother cells in the

initial one-third of the plot. Fig. S4 also shows a scenario

of likely senescent cell in Trap No. 63 at time-point 340, in

which a single mother cell has remained undivided for almost

two-third of the microfluidic experiment period.

In Fig. S5, we illustrate how we can change the reference

point (xr, yr) to visualize the time series from different

perspectives, using Trap No. 44 as an example. Fig. S5a

represents a μPolar plot when the reference point is (0,

0). This representation is only based on the cell centroid

point coordinates without the distance calculation. Fig. S5b

represents a μPolar plot when the reference point is (30, 60).

This representation is based on the distance calculation. The

comparison of selected regions (black box) portrays that cell

variations are more visible in Fig. S5b. Therefore, selecting

the right reference point is an effective factor to improve the

division time-points countability on the plot.

B. Application for microscopic mouse fibroblast images

To demonstrate its general utility, we applied μPolar to a

data set of time-lapse microscopic images of migrating mouse

fibroblasts (Fig.3a). The number of available cells in each

image is in a range of 50 to 70 depending on the time-point.

The average cell size is bigger than the average yeast cell

size. For simplicity, we focused on a section of these images

as illustrated in Fig.3b. Correspondingly, feature extraction is

applied to these images, collecting cells coordinate of each

image in order of time. According to our observations, cells

gradually migrate from the right side to the left side in these

images over time. Thus, we chose the reference point at

the left side of the image edge (xr = 2 pixels, yr = 60

pixels) for distance calculation. In Fig.3c, we used a unique

color to represent the same cell object at each time point.

We like to emphasize that the changing diameters of colored

dots represent the changing cell shapes during migration. In

addition, each color represents the cell number at each time-

point. For example, the orange color at time-point 37 illustrates

that there are 9 cells at this time point and the orange dot is

the cell number 9 at this time-point.

C. Representation of cellular characteristics and movement

Cellular characteristics such as cell sizes and movements

are informative to illustrate biological processes such as aging.

μPolar function has an option to import cell size information

(area) for visualization. In general, there are two sets of color

representation in the μPolar plot: colored lines and colored

dots. The colored lines represent the numbers of cells detected

at each time-point and are often displayed in lighter colors.

The colored dots representing individual cells at each time-

point and are often displayed in darker colors.
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Fig. 2. Typical cell events visualized by μPolar. Any events that occurred below the reference line (red) are denoted as “down,” and any events that
occurred above the reference line (red) are denoted as “up.” (a) There is no cell at the presented time-point (white dot). (b) The two cells represented by dark
red dots and purple dots are close to each other, and division already happened. (c) The black dots represent a division after the cell completed its separation
cycle. (d) Indication of overcrowded cell events. (e) Representation of steady cells in the up region (purple color) and developing cells in the down region
(dark red color). (f) Representation of steady cells in the up region (dark red color) and developing cells in the up region (purple color). (g) Two cells are in
a steady situation for some time, an indication of senescent cells. (h) The representation of a cell that has been dead for some time.

Fig.3c is an example of cell size variation. The cell move-

ment and development can be determined by following a

cell with the same color at each time-point. For instance,

the comparison between the closest cell to the center-point

at time-point 1 (dark red dot) and the closest cell to the plot

center-point at time-point 37 (dark red dot) shows that the cell

migration from time-point 1 to time-point 37 is approximately

20 units.

Fig.4 is a μPolar plot with cell area and color tracking for

time-lapse microfluidic images of dividing yeast cells. Here,

the numbers of cells at each time-point are in a range of 1–5

cells Cells can be visually tracked based on colored dots and

cell size variation, which can assist the determination of cell

division events. The #1 scenario shows that there was a single

cell (black dot) in the previous time-point and there is a mother

cell (purple dot) with developing bud (dark red dot) at the

present time-point. The #2 scenario illustrates a single mother

cell with a daughter cell growing upward. The #3 scenario

indicates an empty trap. In this case, the previous yeast

mother cell has been washed away. Scenario #4 represents

the transition 2 cells to 1 cell, indicating a completion of a

cell division. Scenario #5 shows that a daughter cell (dark red

dot) is growing below a mother cell (purple dot). Scenario

#6 represents an overcrowded situation. Scenario #7 is an

example of a senescent mother cell whose cell division took

a long period of time, probably because the daughter cell is

extremely elongated. Scenario #8 represents a single cell inside

the trap close to the end of the experimental work and is likely

a dead cell.

We would like to emphasize that other cellular characteris-

tics, such as morphological aspect ratio, can be visualized in

μPolar as well.

D. Counting RLS and interpretation of experimental results

μPolar has an additional option to visualize the replica-

tive lifespan. This feature can be added to the plot if RLS

data is available from the dataset. The RLS division point

is represented as a red star at corresponding time points.

Circular plots of dividing cells can visualize the cell division

events in oscillating patterns. Fig.5 demonstrates the RLS

comparison between given RLS information and counting RLS

from μPolar plot division points without prior information. We

previously collected the experimental RLS data for each trap

from [13] and applied this information to the μPolar plot. The

red stars in Fig.5 represent 21 cell divisions from experimental

results. The black arrows inside the plot represent the cell

division events estimated from μPolar plot analysis, counting

22 cell division events. The estimation based on the circular

plot is nearly identical to the experimental result except at

one time-point indicated by a question mark. The oscillating
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Fig. 3. μPolar plot for migrating mouse fibroblast cells in time-lapse microscopic images. Cell areas are represented by dots with variable diameters,
and the same cell objects in each time point are marked by a unique color.

Fig. 4. A μPolar plot with cell area representation and cell tracking for Trap No. 98. The line color represents the number of cells at each time-point,
and dot color represents a color tag for individual cell at each time-point, respectively.
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patterns of the first 17 cell divisions are visually striking,

representing that daughter cells gradually grow larger in size

and then separate from the mother cells at regular intervals

– a characteristic of a healthy yeast mother cell. Although

there are some overcrowded time-points and large cells in the

second half of the plot, this plot demonstrates the utility of

circular plots in RLS estimation.

VI. DISCUSSION

Overall, μPolar is a useful tool for visualizing cell mi-

gration, cell monitoring, and estimating cell division events

from time-lapse microscopic images. The μPolar interpretation

of cell division at each time-point can facilitate lifespan

estimation in aging studies. The comparison between yeast

cell time-lapse microfluidics images and mouse fibroblast cell

time-lapse microscopic images demonstrates that μPolar can

be a general tool for visualizing time-lapse images.

Visualizing cell division events can offer biological insights.

For instance, in the microfluidic images, it can be seen that

when yeast cells become older, interestingly, the cell division

cycle becomes longer. It can also be seen that there is a

relationship between cell size and cell division time-length.

Similarly, visualizing and tracking mouse fibroblast cells show

how cell sizes change during their migration.

Time-lapse microscopy is becoming an increasingly pop-

ular research tool to monitor cellular events in biomedical

research. One such application is the microfluidics-based high-

throughput analysis of dividing yeast cells. It is challenging

to visualize and interpret the large volumes of data gathered

through microfluidics-based microscopy. Here, we developed

a circular plotting method, μPolar, to visualize cell movements

and cellular division events at hundreds of time points. Our

method is interactive and easy to use. We demonstrated the

utility of our method to describe the events of dividing yeast

cells and migrating mouse fibroblast cells. Our method could

be applied to other types of microfluidic devices and time-

lapse microscopic imaging experiments.

VII. SUPPLEMENTAL INFORMATION

Fig. S1: Time-lapse full microfluidic images with μPolar

plots for Trap No. 2, 12, 22, 41, 50, 59, 73, 82, 98 and 100.

Fig. S2: Visualization of Trap No. 8 with a corresponding

microfluidic image.

Fig. S3: Visualization of Trap No. 33 with a correspond-

ing microfluidic image.

Fig. S4: Oscillating patterns of cell divisions are evident

in the circular plot of Trap No. 63.

Fig. S5: Illustration on how reference points can be

changed to emphasize different aspects of cellular events, with

Trap No. 44 as an example.
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